larger than the monatomic cations, there are also short intermolecular contacts for the nitrosyl and carbonyl groups, the shortest $\mathrm{O} \cdots \mathrm{O}$ distance being 3.075 (10) \AA. These simply represent close packing of the ions, rather than any significant specific interactions. Iron atoms are all at least 5.677 (2) \AA apart. In summary, the structure of (2) [as well as that of (1)] is ionic, with no $\mathrm{Tl}-\mathrm{Fe}$ or $\mathrm{Tl}-\mathrm{Tl}$ covalent bonding.

We thank SERC for a research grant (WC) and a studentship (LMC).

References
Burlitch, J. M. \& Theyson, T. W. (1974). J. Chem. Soc. Dalton Trans. pp. 828-837.

Clegg, W. (1981). Acta Cryst. A37, 22-28.
Compton, N. A., Errington, R. J. \& Norman, N. C. (1990). Adv. Organomet. Chem. 31, 91-182, and references therein.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105107.

Janiack, C. \& Hoffmann, R. (1990). J. Am. Chem. Soc. 112, 5924-5946.
Klüfers, P. (1983). Z. Kristallogr. 165, 217-226.
Pedersen, S. E. \& Robinson, W. R. (1975). Inorg. Chem. 14, 2360-2365, 2365-2371.
Rogers, D. (1981). Acta Cryst. A37, 734-741.
Schussler, D. P., Robinson, W. R. \& Edgell, W. F. (1974). Inorg. Chem. 13, 153-158.
Sheldrick, G. M. (1985). SHELXTL. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Revision 5.1. Univ. of Göttingen, Germany.
Wang, H. \& Robertson, B. E. (1985). Structure and Statistics in Crystallography, edited by A. J. C. Wilson, pp. 125-136. New York: Adenine Press.

Acta Cryst. (1992). C48, 239-241

Structure of $\mathbf{P b}_{\mathbf{2}} \mathbf{M n F e}_{\mathbf{2}} \mathbf{F}_{\mathbf{1 2}} \cdot \mathbf{3} \mathbf{H}_{\mathbf{2}} \mathbf{O}$

By A. Le Bail and A. M. Mercier
Laboratoire des Fluorures, URA 449, Université du Maine, 72017 Le Mans CEDEX, France

(Received 8 March 1991; accepted 21 August 1991)

Abstract

Diiron dilead manganese dodecafluoride trihydrate, $M_{r}=863.06$, hexagonal, $P \overline{6} 2 m, a=$ 9.320 (1),$c=3.9618$ (5) $\AA, V=298.0$ (1) $\AA^{3}, Z=1$, $D_{x}=4.81 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Мо $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=$ $31.95 \mathrm{~mm}^{-1}, F(000)=337$, room temperature, $R=$ 0.032 for 845 unique reflections, crystal growth by hydrothermal synthesis in HF solution. The structure presents three chains of $M \mathrm{~F}_{6}$ octahedra ($M=\mathrm{Fe}^{3+}$, Mn^{2+} statistically distributed on the same site) sharing trans corners along [001] and connected by cis corners to form a triple infinite isolated chain of formula $\left[M_{3} \mathrm{~F}_{12}\right]_{n}^{4 n-}$. The structure is related to the CsCrF_{4} type; however, the Cs-atom site is occupied by the water molecule and the Pb atom occupies a trigonal prism of F atoms tricapped by the water molecules.

Introduction. Investigations of $\mathrm{PbF}_{2}-\mathrm{FeF}_{3}-\mathrm{MF}_{2}-$ $\mathrm{HF}_{\mathrm{aq}}$ systems ($M=\mathrm{Mn}, \mathrm{Zn}, \mathrm{Cu}$) by hydrothermal synthesis reveal to date two new low-dimensional structure types. One of them, having the $\mathrm{Pb}_{8} M \mathrm{Fe}_{2} \mathrm{~F}_{24}$ formulation, is characterized by a structure containing infinite isolated $\left[M \mathrm{Fe}_{2} \mathrm{~F}_{14}\right]_{n}^{6 n-}$ chains of cornersharing octahedra inserted into a fluorite-like matrix (Le Bail \& Mercier, 1991). The second structure type is that of $\mathrm{Pb}_{2} \mathrm{MnFe}_{2} \mathrm{~F}_{12} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, whose determination is presented here; it is built up from completely different condensed chains.

Experimental. A few hexagonal prismatic light brown single crystals of $\mathrm{Pb}_{2} \mathrm{MnFe}_{2} \mathrm{~F}_{12} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ were grown by hydrothermal synthesis in $1 M$ HF solution following a procedure described by Plet, Fourquet, Courbion, Leblanc \& De Pape (1979). Platinum tube, volume $4.41 \mathrm{~cm}^{3}$, filling rate $60 \%, 1.25 \times$ $10^{-3} \mathrm{~mol}$ of nominal composition $\mathrm{Pb}_{2} \mathrm{MnFe}_{2} \mathrm{~F}_{12}$ in $2.5 \mathrm{~cm}^{3} 1 \mathrm{MHF}$, heating rate $300 \mathrm{~K} \mathrm{~h}^{-1}$, final temperature $T_{f}=573 \mathrm{~K}$, stage to reach $T_{f} 3 \mathrm{~d}$, cooling rate $30 \mathrm{~K} \mathrm{~h}^{-1}$, initial pressure $100 \mathrm{MPa}, P$ at T_{f} $=160 \mathrm{MPa}$. Phases also present: $\mathrm{Pb}_{8} \mathrm{MnFe}_{2} \mathrm{~F}_{24}$ and at least one other, currently being investigated.

Data collected on a Siemens AED-2 four-circle diffractometer. Prismatic crystal $0.13 \times 0.10 \times$ $0.12 \mathrm{~mm} . \omega-2 \theta$ step-scan mode in 36 steps of $\Delta \omega=$ 0.035°. Time per step $t_{\text {min }}=1 \mathrm{~s}, t_{\text {max }}=4 \mathrm{~s}$. Lattice constants based on 30 reflections at $2 \theta \simeq 30^{\circ}$. Absorption correction by the Gauss method $A_{\max }=$ $0.17, A_{\text {min }}=0.06$. Intensity measurement of two independent sets to $2 \theta_{\text {max }}=90^{\circ}$ within the range $-18 \leq h \leq 18, \quad-18 \leq k \leq 18, \quad 0 \leq l \leq 8$. Standard reflections $\overline{4} 21, \overline{2} 1 \overline{2}, \overline{2} 4 \overline{1}$, intensity variation 1.0%. 2557 reflections measured, 845 independent reflections used for refinements $[|F|>6 \sigma(|F|)], R_{\mathrm{av}}=$ 0.040 . Structure solved by Patterson method. F magnitudes used in least-squares refinements, 26 parameters refined, $\Delta / \sigma_{\text {max }}=0.001$, secondary extinction x $=0.0059$ (5), scattering factors for $\mathrm{Pb}^{2+}, \mathrm{Mn}^{2+}$,

[^0]Table 1. Coordinates, equivalent isotropic temperature factors (\AA^{2}) and anisotropic temperature factors ($U_{i j}$ $\left.\times 10^{4}\right)$ for $\mathrm{Pb}_{2} \mathrm{MnFe}_{2} \mathrm{~F}_{12} \cdot 3 \mathrm{H}_{2} \mathrm{O}(M=\mathrm{Mn}, \mathrm{Fe})$ with e.s.d.'s in parentheses

	$U_{13}=U_{23}=0$.			
	$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
	Site		$y \quad z$	$B_{\text {eq }}$
Pb	$2(d) \quad \frac{1}{3}$	$\frac{2}{3}$	$\frac{2}{3} \frac{1}{2}$	1.46 (1)
M	$3(f) \quad 0.7$	(1) 0	0 0	0.51 (3)
F(1)	$6(j) \quad 0.5$		0.8203 (6) 0	1.60 (18)
F(2)	$3(g) \quad 0.76$	(8) 0	0 - ${ }^{\frac{1}{2}}$	1.95 (29)
F(3)	$3(f) \quad 0.17$	(8) 0	$0 \quad 0$	1.87 (25)
$\mathrm{O}(w)$	$3(g) \quad 0.4$	(9) 0	0	1.99 (31)
	U_{11}	U_{22}	U_{33}	U_{12}
Pb	185 (1)	185 (1)	184 (1)	92 (1)
M	65 (2)	65 (2)	65 (2)	33 (1)
F(1)	124 (13)	217 (16)) 215 (16)	46 (11)
F(2)	276 (20)	347 (33)) 140 (19)	174 (16)
F(3)	221 (20)	142 (19)) 319 (31)	71 (10)
$\mathrm{O}(w)$	244 (20)	278 (31)) 245 (29)	139 (16)

Table 2. Selected bond lengths (\AA) and angles $\left.{ }^{(}{ }^{\circ}\right)$ for $\mathrm{Pb}_{2} \mathrm{MnFe}_{2} \mathrm{~F}_{12} \cdot 3 \mathrm{H}_{2} \mathrm{O}(M=\mathrm{Mn}, \mathrm{Fe})$ with e.s.d.'s in parentheses

$2 \times M-\mathrm{F}(1)$	$1.956(4)$	$6 \times \mathrm{Pb}-\mathrm{F}(1)$	$2.587(3)$
$2 \times M-\mathrm{F}(2)$	$1.981(1)$	$3 \times \mathrm{Pb}-\mathrm{O}(w)$	$2.824(2)$
$2 \times M-\mathrm{F}(3)$	$2.009(2)$	$\langle d)$	2.666
$\langle d\rangle$	1.982		
			$95.7(4)$
$\mathrm{F}(1)-\mathrm{F}(1)$	$2.901(6)$	$\mathrm{F}(1)-M-\mathrm{F}(1)$	$90.2(2)$
$\mathrm{F}(1)-\mathrm{F}(2)$	$2.788(4)$	$\mathrm{F}(1)-M-\mathrm{F}(2)$	$86.8(3)$
$\mathrm{F}(1)-\mathrm{F}(3)$	$2.725(9)$	$\mathrm{F}(1)-M-\mathrm{F}(3)$	$89.8(3)$
$\mathrm{F}(2)-\mathrm{F}(3)$	$2.817(4)$	$\mathrm{F}(2)-M-\mathrm{F}(3)$	$90.6(2)$
$\mathrm{F}(3)-\mathrm{F}(3)$	$2.857(5)$	$\mathrm{F}(3)-M-\mathrm{F}(3)$	$179.5(1)$
		$\mathrm{F}(2)-M-\mathrm{F}(2)$	$117.4(3)$
		$\mathrm{F}(3)-M-\mathrm{F}(1)$	
			$149.4(1)$
$2 \times M-M$	$3.876(2)$	$M-\mathrm{F}(3)-M$	$179.5(1)$
$2 \times M-M$	$3.962(1)$	$M-\mathrm{F}(2)-M$	
$4 \times M-\mathrm{Pb}$	$4.127(1)$		$85.2(3)$
$2 \times \mathrm{O}(w)-\mathrm{F}(3)$	$2.926(8)$	$\mathrm{F}(3)-\mathrm{O}(w)-\mathrm{F}(3)$	
$4 \times \mathrm{O}(w)-\mathrm{F}(1)$	$3.146(7)$		

$\mathrm{Fe}^{3+}, \mathrm{F}^{-}$ions from International Tables for X-ray Crystallography (1974, Vol. IV) and for O^{2-} from Suzuki (1960). Calculations with SHELX76 (Sheldrick, 1976) on a MicroVAX II computer. Refinements of the scale factor and the isotropic thermal parameter of the Pb atom on the $2(d)$ Wyckoff position lead to $R=0.246$. The residual decreases to $R=0.091$ when adding two Fe and one Mn atom statistically distributed on the $3(f)$ site and to $R=0.034$ with all atoms in the isotropic thermalmotion approximation. Final $R=0.032(w R=0.033)$ using anisotropic thermal parameters for all atoms. Maximum and minimum heights in final difference map 3.3 and $-3.9 \mathrm{e} \AA^{-3}$ in the vicinity of the Pb atom. $\quad w=2.09 /\left[\sigma^{2}\left(\left|F_{o}\right|\right)+0.00059 F_{o}^{2}\right]$. Absoluteconfiguration choice confirmed by $R=0.091$ using coordinates $-x,-y,-z$. H atoms not located. No
superstructure detected by careful check of long-time exposures from photographic diffraction techniques.

Discussion. The final atomic coordinates and anisotropic temperature factors are listed in Table 1,* selected bond lengths and angles are in Table 2. The relation with the CsCrF_{4}-type structure (Babel \& Knoke, 1978) also adopted by CsAlF_{4} (Lösch \& Hebeker, 1979; Fourquet, Plet, Courbion, Bulou \& De Pape, 1979) is clear from Fig. 1. In both structures, the condensed $\left(M_{3} \mathrm{~F}_{12}\right)_{n}$ infinite isolated chains are similar. Differences are as follows: the chain charge is $3 n^{-}$when $M=\mathrm{Cr}^{3+}$ or Al^{3+} and $4 n^{-}$ when it is ($\left.{ }_{3} \mathrm{Fe}^{3+}, \frac{1}{3} \mathrm{Mn}^{2+}\right)$; the $2(d)$ and $3(g)$ positions respectively empty and occupied by the Cs atom in CsCrF_{4} are occupied by the Pb atom and the water molecule $\mathrm{O}(w)$ in $\mathrm{Pb}_{2} \mathrm{MnFe}_{2} \mathrm{~F}_{12} \cdot 3 \mathrm{H}_{2} \mathrm{O}$. The Pb atom is coordinated by a trigonal prism of F atoms $F(1)$ tricapped by the water molecules. The mean $M-\mathrm{F}$ distance is in agreement with the $\frac{1}{3}, \frac{2}{3}$ contributions of $\mathrm{Mn}-\mathrm{F}(2.115 \AA)$ and $\mathrm{Fe}-\mathrm{F}(1.93 \AA)$ distances of Shannon (1976), giving $1.992 \AA$. In such a structure, some $\mathrm{Mn} / \mathrm{Fe}$ ordering in each chain cannot be excluded because it would not be disclosed by diffraction owing to the lack of correlation between neighbouring chains. Therefore, $\mathrm{Pb}_{2} \mathrm{MnFe}_{2} \mathrm{~F}_{12} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ is described here by a mean stucture; on the other hand, disorder was also suggested to characterize CsCrF_{4} for which the different

[^1]

Fig. 1. (001) projection of the structure of $\mathrm{Pb}_{2} \mathrm{MnFe}_{2} \mathrm{~F}_{12} \cdot 3 \mathrm{H}_{2} \mathrm{O}$. Large circles are Pb atoms $\left(z=\frac{1}{2}\right)$, small circles are $\mathrm{O}(w)\left(z=\frac{1}{2}\right)$; $M=\mathrm{Mn}, \mathrm{Fe}$ occupies octahedra $(z=0)$ formed by $\mathrm{F}(1), \mathrm{F}(3)$ at $z=0$ and $\mathrm{F}(2)\left(z=\frac{1}{2}\right)$.
anisotropic thermal-motion behaviour of the equatorial and apical F atoms was interpreted as the consequence of a probable tilting of the chains along the c axis (Babel \& Knoke, 1978); such behaviour is also observed for $\mathrm{Pb}_{2} \mathrm{MnFe}_{2} \mathrm{~F}_{12} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with the apical $F(2)$ and equatorial $F(3)$ strongly distributed in the $a b$ plane and in the \mathbf{c} direction (see $U_{i j}$, Table 1) respectively. Nevertheless, as usual, the terminal F atom $\mathrm{F}(1)$ corresponds to a shorter $M-\mathrm{F}$ distance than the bridging ones $[\mathrm{F}(2), \mathrm{F}(3)$]. Although H atoms have not been located, the $\mathrm{O}(w)-\mathrm{F}(3)$ distance, distinctly shorter than the other $\mathrm{O}(w)-\mathrm{F}$ distances (Table 2), suggests that hydrogen bonding may occur through $\mathrm{F}(3)$; thus the H atom could occupy an $(x 0 z) 6(i)$ position with $x \simeq 0.35, z \simeq 0.30$. Another related material showing triangular isolated octahedral chains is KCrF_{4} (Dewan \& Edwards, 1986; Kissel \& Hoppe, 1987). Thermal behaviour and magnetic properties are now being investigated. Possible isotypic materials are being researched.

The authors are very indebted to Dr M. Leblanc (Université du Maine) for the X-ray data collection.

References

Babel, D. \& Knoke, G. (1978). Z. Anorg. Allg. Chem. 442, 151-162.
Dewan, J. C. \& Edwards, A. J. (1986). J. Chem. Soc. Dalton. Trans. 12, 2623-2627.
Fourquet, J. L., Plet, F., Courbion, G., Bulou, A. \& De Pape, R. (1979). Rev. Chim. Minér. 16, 490-500.

Kissel, D. \& Hoppe, Z. (1987). Z. Naturforsch. Teil B, 42, 135-141.
Le Bail, A. \& Mercier, A. M. (1991). Eur. J. Solid State Inorg. Chem. In the press.
Lösch, R. \& Hebeker, C. H. (1979). Z. Naturforsch. 346, 131-134.
Plet, F., Fourquet, J. L., Courbion, G., Leblanc, M. \& De Pape, R. (1979). J. Cryst. Growth, 47, 699-702.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1976). SHELX76. A program for crystal structure determination. Univ. of Cambridge, England.
Suzuki, T. (1960). Acta Cryst. 13, 279-281.

Crystal Chemistry of cyclo-Hexaphosphates. XIX. Structure of Barium cyclo-Hexaphosphate Octahydrate

By Mohamed Rzaigu
Ecole Normale Supérieure, 7021 Zarzouna Bizerte, Tunisia
and Marie-Thérèse Averbuch-Pouchot and André Durif
Laboratoire de Cristallographie, associé à l'Université J. Fourier, CNRS, 166X, 38042 Grenoble CEDEX, France

(Received 11 June 1991; accepted 22 August 1991)

Abstract

Ba}_{3} \mathrm{P}_{6} \mathrm{O}_{18} .8 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=1029.966\), monoclinic, $\quad C 2 / c, \quad a=20.98$ (2), $\quad b=7.227$ (3),$\quad c=$ 17.44 (1) $\AA, \beta=119.56$ (3) ${ }^{\circ}, V=2300(5) \AA^{3}, Z=4$, $D_{x}=2.974 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.7017 \AA, \quad \mu=$ $5.764 \mathrm{~mm}^{-1}, F(000)=1928, T=294 \mathrm{~K}$, final $R=$ 0.041 for 2699 reflections. The atomic arrangement can be described as being built of two layers of BaO_{8} and BaO_{10} polyhedra approximately centred by planes $z=\frac{1}{4}$ and $\frac{3}{4}$ interconnected through the external oxygen atoms of the large $\mathrm{P}_{6} \mathrm{O}_{18}$ groups. Inside a layer the Ba polyhedra assemble to form rings of eight polyhedra tiling the plane. The phosphoric ring anion has a twofold internal symmetry rarely observed in the crystal chemistry of cyclohexaphosphates. Hydrogen atoms could not be located.

Introduction. From a structural point of view very little is known about divalent cation cyclo-hexaphosphates. The chemical preparation and crystal structure of the cadmium salt, $\mathrm{Cd}_{3} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, were first reported by Averbuch-Pouchot (1989a), later on the chemical preparation and characterization of the isotypic manganese salt were described by AverbuchPouchot \& Durif (1989). The chemical preparation and crystal structure of the copper salt, $\mathrm{Cu}_{3^{-}}$ $\mathrm{P}_{6} \mathrm{O}_{18} .14 \mathrm{H}_{2} \mathrm{O}$, have also been reported by AverbuchPouchot (1989b). Some chemical investigations by Lazarevski, Kubasova, Chudinova \& Tananaev (1980, 1982a,b) showing the existence of several hydrated compounds, $\mathrm{Cd}_{3} \mathrm{P}_{6} \mathrm{O}_{18} .16 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{Mn}_{3} \mathrm{P}_{6} \mathrm{O}_{18} .9 \mathrm{H}_{2} \mathrm{O}, \mathrm{Co}_{3} \mathrm{P}_{6} \mathrm{O}_{18} .14 \mathrm{H}_{2} \mathrm{O}, \mathrm{Ni}_{3} \mathrm{P}_{6} \mathrm{O}_{18} .17 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cu}_{3} \mathrm{P}_{6} \mathrm{O}_{18} .14 \mathrm{H}_{2} \mathrm{O}$, should also be mentioned. The
© 1992 International Union of Crystallography

[^0]: (C) 1992 International Union of Crystallography

[^1]: * Lists of structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54525 (6 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

